Applications and Implementation Working Group Blackmon/McNabb ~ Co-chairs ``` ➤ Potential Applications > Astrophysics >rp process: (p,\gamma) \ggp process: (\gamma,n), (\gamma,\alpha) \ggs process: (n,\gamma) \ggr process: (n,f), (n,\gamma) >Stockpile stewardship >Radiochemical flux monitors: (n,\gamma), (n,2n), (n,p) \rightarrowActinides: (n,f),(n,\gamma) \gg Fission fragments: (n,\gamma), (n,2n) >ATW, Criticality, etc. ➤ Actinides: (n,xnf) >Nuclear structure ``` # The rp process and (p,γ) reactions ### ➤ Proton-rich nuclei near the proton drip line \gg Novae: E_p < 2 MeV & A<40 \gg X-ray bursts: E_p < 4 MeV & A<105 ## **>**Low level density - **➣**Isolated resonances - ➤ Transfer reactions are well-established technique to resolved states - ➤ Shell model and R-matrix are theoretical workhorses #### ➤ High level density - >HF rates are used - \gg Detailed comparisons of HF to (p,γ) near stability and shell model rates have been performed - ➤ Can improvements be made in HF rates (e.g. better level densities)? Could measurements of surrogate reactions to unresolved states help? #### ➤ Intermediate level density - >HF not reliable, but difficult experimentally to resolve experimentally resolve states: e.g. 72 Br(p, γ) 73 Kr Q=5.1 MeV - > Surrogate reactions may be an important tool for improving reaction rates in this regime ## Supernovae #### >> p process - **>**Low abundance - **≫**Proton-rich nuclei - >74Se- 196 Hg - \gg (γ ,a) and (γ ,n - ➤ Reactions on excited states - ➤HF rates are used - *>*Low-energy αN optical model - >(n, α) used ~ other surrogates? #### **>**r process - \gg Masses, half-lives, P_n most important - ➤Studies of neutron-rich nuclei (structure) important for improving models - ➤ Fission is potentially very important, models only beginning to incorporate. - ➤ Need fission model (probability and mass distribution) with predictive power. - >(n, γ) rates can redistribute matter during freezeout - ➤ Low level density: Surrogate reactions (e.g. d,p) - ➤ High level density: HF rates (level densities, isospin & parity dependence) ## s process branch points | Isotope | Half-life | RIA
intensity
(10 ⁹ pps) | |--------------------------|-----------------------|---| | ⁷⁹ Se | 1.1x10 ⁶ y | 20 | | ⁸⁵ Kr | 10.7 y | 80 | | ⁸⁶ Rb | 19 d | 800 | | ⁸⁹ Sr | 50 d | 1 | | ⁹⁴ Nh | 2x10 ⁴ y | 1 | | ¹⁰³ Ru | 39 d | 1 | | ¹⁰⁶ Ru | 367 d | 5 | | ¹¹⁰ Δα | 250 d | 10 | | 115Cd | 44 d | 90 | | ¹¹⁴ In | 50 d | 90 | | ¹²¹ Sn | 50 y | 120 | | ¹²³ Sn | 130 d | 150 | | ¹²⁴ Sb | 60 d | 1 | | ¹²⁵ Sb | 2.8 y | 3 | | ¹²⁷ Te | 109 d | 1 | | 129 T $_{f \Box}$ | 34 d | 20 | | 133 y | 5.2 d | 200 | | ¹³⁴ Cs | 2.1 y | 2000 | | 135 | 2x10 ⁶ y | 3000 | | 141 | 33 d | 500 | | ¹⁴³ Pr | 14 d | 800 | | ¹⁴⁷ Nd | 11 d | 80 | | ¹⁴⁷ Pm | 2.62 y | 80 | | ¹⁵¹ Sm | 90 y | 10 | | L | | | |-------------------|-----------------------|-----------------------| | Isotope | Half-life | RIA intensity | | | | (10 ⁹ pps) | | ¹⁵³ Sm | 1.9 d | 20 | | ¹⁵² Eu | 13 y | 40 | | 154Eu | 8.6 y | 30 | | ¹⁵⁵ Eu | 4.9 y | 4 | | ¹⁵³ Gd | 241.6 d | 20 | | ¹⁶⁰ Tb | 72 d | 1 | | ¹⁶³ Ho | 4570 y | 400 | | ¹⁶⁹ Fr | 9.4 d | 30 | | ¹⁷⁰ Tm | 128.6 d | 100 | | ¹⁷¹ Tm | 1.92 y | 100 | | ¹⁷⁷ Lu | 6.7 d | 1 | | ¹⁷⁹ Ta | 1.7 y | 1 | | ¹⁸¹ Hf | 42 d | 30 | | ¹⁸² Hf | 9x10 ⁶ y | 10 | | ¹⁸² Ta | 114 d | 1 | | ¹⁸⁵ W | 75.1 d | 2 | | ¹⁸⁶ Re | 2.0 y | 1 | | ¹⁹¹ Os | 15 d | 2 | | ¹⁹² lr | 74 d | 1 | | ¹⁹³ Pt | 50 y | 1 | | ¹⁹⁸ Au | 2.7 d | 1 | | ²⁰³ Hg | 47 d | 100 | | ²⁰⁴ TI | 3.77 <u>y</u> | 1 | | ²⁰⁵ Pb | 1.5x10 ⁷ y | 1 | - $>(n,\gamma)$ MACs - \gg 8 and 30 keV - ➤Branch points (radioactive!) extremely important - ➤DANCE will measure some ~ but *very* difficult - ➤ Alternate technique (surrogate reaction) needed - ➤One would like accurate (10%) measurements ## Stockpile stewardship needs - ➤ Radiochemical tracers - >>Ti,Cr,Fe,Br,Kr,Y,Zr,Nb,Mo,Tm,Lu,Ta,Ir,Au,Bi - **≫**Actinides - **>**Prompt fission fragments - >Sensitivity studies with reaction rate networks may help set priorities | Reaction | Energy Range (MeV) | Importance | Accuracy | |---------------------|--------------------|------------|----------| | (n,γ) | 0.01- 0.2 | High | 10% | | (n,n') | 1-10 | Low | 10% | | (n,2n) | 10-16 | High | 3-5% | | $(n,pX),(n,\alpha)$ | 0.1-16 | Medium | 10% | | (n,f) | 0.1-16 | High | 1-2% | # Low energy (n,γ) - ➤ Very important for both stewardship science and the s process - ➤ Presentations by Bernstein, Dietrich are encouraging, but much work to do - ➤ Challenges: - ➤ Need to probe narrow energy window near the neutron threshold - ➤ Energy resolution >> level spacing - ➤ What energy resolution is required? - ➤ Need to characterize detector response function accurately. - ➤ Need to thoroughly investigate test cases on lighter nuclei - ➤ Is there useful existing data? ## **Test cases** - ➤ How much meaning can be inferred from a test case? - ➤ A variety of test cases with different dependences is desirable. - \gg How problematic is angular momentum matching? Do angular distributions help in constraining the J^{π} distribution in the compound nucleus? - ➤ How much can measuring multiple channels help? # $^{151}\mathrm{Sm}(\mathrm{n},\mathrm{y})$ - ➤Important s process branch point - \gg (n, γ) will be measured $$>S_n = 8.3 \text{ MeV}$$ >152Sm(p,p') >154Sm(p,t) \gg ¹⁵⁰Sm(t,p) \gg ¹⁵³Eu(t, α) # (n, xn yp zα) needs - ➤ High accuracy(3-5%) desired - ➤But we'll take what we can get - ➤ Energies are typically 5-15 MeV - >Only moderate energy resolution (100 keV) required - Most interesting cases are when several channels are competing for the reaction cross section - **>**Fission & (n,n') & (n,2n) - >(n, n') & (n, p) & (n,2n) ## $(n, xn yp z\alpha)$ issues - >> Helps to constrain the reaction cross section - ➤ How good is a global optical model? - ➤ What measurements can improve? - ➤ How do you identify the channel of interest. - ➤ Gammas are positive but can you understand cascade scheme? - ➤ Neutrons more direct? Gd-doped scintillators? - >Contributions from direct reactions, pre-equilibrium - ➤ Particle distributions give us a probe - \gg Higher beam energies required to populate equivalent 5-14 MeV neutrons compared with (n, γ) ## Neutron-induced fission - ➤ General consensus: Walid's talk was an example to live up to - >Comparisons with solid benchmarks from direct measurements - ➤ Addressed angular momentum matching issues - New issues at higher energies (pre-equilibrium, more reliance on models) limitations still to be explored - \gg (n,xnf) at high energies of interest for ATW, criticality, etc. ## Conclusions and general comments - ➤ There are significant nuclear data needs not met by direct measurement. - >Surrogate techniques seem promising for obtaining some of this data. - ➤ A substantial body of test cases needs to be measured and evaluated to build confidence in the applicability and precision. - ➤ Results will depend on mass region, shell structure, level density. Test cases need to be matched to nuclei of interest. - ➤ Where are we going to do these measurements? - ➤ Can sufficient beam time and manpower be devoted to this effort? - **>**Throughput? - ➤ How much information is to be gained from previous work? - >Important to capitalize on the lessons learned from the substantial work in previous decades, ala Walid. - ➤ Can significant improvements be made in model inputs? - **>**Level densities - **>**Isospin dependences - **>**Parity dependences - >Can studying surrogate reactions help improve the predictive power of theory where is no data?